MATH 155 - Chapter 9.5 - Alternating Series; Absolute Convergence, and Conditional Convergence: (Can apply to positive and negative-term series)

Dr. Nakamura

1. Definition: (Alternating Series) An alternating series is an infinite series of the form

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + a_5 - \cdots$$
$$\sum_{n=1}^{\infty} (-1)^n a_n = -a_1 + a_2 - a_3 + a_4 - a_5 + \cdots$$

or

where
$$a_n > 0$$
 for all n .

2. Theorem: Alternating Series Test

Given an alternating series of the form $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ or $\sum_{n=1}^{\infty} (-1)^n a_n$, let $a_n > 0$ for all n. If

1. $a_n \ge a_{n+1} > 0$ for all n (i.e. the sequence $\{a_n\}$ is decreasing for all n), and

2. $\lim_{n \to \infty} a_n = 0.$

Then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ or $\sum_{n=1}^{\infty} (-1)^n a_n$ converge.

Note: Suppose $\{a_n\}$ is decreasing for all n, but $\lim_{n\to\infty} a_n \neq 0$. That does NOT imply that $\sum_{n=1}^{\infty} (-1)^n a_n$ diverges!!

3. Theorem: Alternating Series Remainder

If a convergent alternating series satisfies the condition $a_n \ge a_{n+1}$ for all n, then the absolute value of the remainder R_N involved in approximating the sum S by S_N is less than or equal to the first neglected term. ie.

$$|R_N| = |S - S_N| \le a_{N+1}$$

4. <u>Definition: (Absolute Convergence)</u> We say that the series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges. (i.e. the sum is a finite number.)

5. Theorem: Absolute convergence Test

If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.

6. Definition: (Conditional Convergence) A series that converges but does NOT absolutely converges is called conditionally convergent. i.e. $\sum_{n=1}^{\infty} a_n$ converges, conditionally, if $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} |a_n|$ diverges.

NOTE: A series can either be

1.
$$\sum_{n=1}^{\infty} |a_n|$$
 converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges. (Absolutely Convergent)
2. $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges. (Conditionally Convergent)
3. $\sum_{n=1}^{\infty} a_n$ diverges. (Divergent)