MATH 155 - Chapter 9.5 - Alternating Series; Absolute Convergence, and Conditional Convergence: (Can apply to positive and negative-term series)

Dr. Nakamura

1. Definition: (Alternating Series) An alternating series is an infinite series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots
$$

or

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}=-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+\cdots
$$

where $a_{n}>0$ for all n.

2. Theorem: Alternating Series Test

Given an alternating series of the form $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$, let $a_{n}>0$ for all n. If

1. $a_{n} \geq a_{n+1}>0$ for all n (ie. the sequence $\left\{a_{n}\right\}$ is decreasing for all n), and
2. $\lim _{n \rightarrow \infty} a_{n}=0$.

Then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converge.
Note: Suppose $\left\{a_{n}\right\}$ is decreasing for all n, but $\lim _{n \rightarrow \infty} a_{n} \neq 0$. That does NOT imply that $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ diverges!!

3. Theorem: Alternating Series Remainder

If a convergent alternating series satisfies the condition $a_{n} \geq a_{n+1}$ for all n, then the absolute value of the remainder R_{N} involved in approximating the sum S by S_{N} is less than or equal to the first neglected term. ie.

$$
\left|R_{N}\right|=\left|S-S_{N}\right| \leq a_{N+1}
$$

4. Definition: (Absolute Convergence) We say that the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. (ie. the sum is a finite number.)
5. Theorem: Absolute convergence Test

If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
6. Definition: (Conditional Convergence) A series that converges but does NOT absolutely converges is called conditionally convergent. ie. $\sum_{n=1}^{\infty} a_{n}$ converges conditionally, if $\sum_{n=1}^{\infty} a_{n}$ converges, but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges.

NOTE: A series can either be

1. $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges. (Absolutely Convergent)
2. $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges. (Conditionally Convergent)
3. $\sum_{n=1}^{\infty} a_{n}$ diverges. (Divergent)
